资源类型

期刊论文 260

会议视频 3

年份

2023 21

2022 34

2021 23

2020 13

2019 23

2018 19

2017 15

2016 15

2015 10

2014 19

2013 13

2012 3

2011 7

2010 6

2009 11

2008 9

2007 13

2004 1

2003 1

2001 1

展开 ︾

关键词

印染废水 2

厌氧消化 2

吸附 2

废水 2

废水处理 2

绿色化工 2

重金属废水 2

2 1

4-二硝基茴香醚 1

GA-BP网络 1

PDMS 1

中空纤维膜 1

临界浓度 1

乳状液 1

产能 1

人工湿地 1

优化 1

光催化 1

全程氨氧化细菌 1

展开 ︾

检索范围:

排序: 展示方式:

Enhanced production of laccase by

Wei SUN, Meiying XU, Chunyu XIA, Anhua LI, Guoping SUN

《环境科学与工程前沿(英文)》 2013年 第7卷 第2期   页码 200-210 doi: 10.1007/s11783-012-0457-0

摘要: The effect of physical parameters of cultivation (load volume, temperature, pH, agitation, inoculum size, and incubation period) in the production of laccase by wood-rotting basidiomycete were studied using diluted molasses distillery wastewater (MDW) as a major composition. Using fractional factorial design, our study first identified load volume, agitation, and inoculum size as statistically significant factors. Optimal preferences and mutual interactions of the factors were then determined by the response surface method, which is based on the center composite design. A quadratic model was used to fit the experimental data. The optimized operational parameters for laccase production were determined to be the following: culture temperature of 25°C, pH 4, load volume of 40 mL diluted MDW in 150 mL flask, agitation rate of 183 r·min , inoculation of 11.5% v/v, and cultivation time of 6 d. The experimental validation under these conditions (the maximum laccase production of 2198.2 U·mL was within the confidence interval) subsequently verified the accuracy of the constructed model. Moreover, the removal of chemical oxygen demand and nitrogen of MDW reached 62.85% and 48.00% respectively, and the decolorization ratio under the optimal condition was 41.85%. The enhanced production of laccase by is a new recovery strategy for MDW.

关键词: laccase     Coriolus hirsutus     fractional factorial design     response surface method     molasses distillery wastewater    

of a hybrid anaerobic-contact oxidation biofilm baffled reactor for the treatment of decentralized molasseswastewater

Minmin LIU,Ying ZHAO,Beidou XI,Li’an HOU,Xunfeng XIA

《环境科学与工程前沿(英文)》 2014年 第8卷 第4期   页码 598-606 doi: 10.1007/s11783-013-0576-2

摘要: A novel hybrid anaerobic-contact oxidation biofilm baffled reactor (HAOBR) was developed to simultaneously remove nitrogenous and carbonaceous organic pollutants from decentralized molasses wastewater in the study. The study was based on the inoculation of anaerobic granule sludge in anaerobic compartments and the installation of combination filler in aerobic compartments. The performance of reactor system was studied regarding the hydraulic retention time (HRT), microbial characteristics and the gas water ratio (GWR). When the HRT was 24h and the GWR was 20:1, total ammonia and chemical oxygen demand (COD) of the effluent were reduced by 99% and 91.8%, respectively. The reactor performed stably for treating decentralized molasses wastewater. The good performance of the reactor can be attributed to the high resistance of COD and hydraulic shock loads. In addition, the high solid retention time of contact oxidation biofilm contributed to stable performance of the reactor.

关键词: combination filler     contact oxidation biofilm     food wastewater     anaerobic baffled reactor    

Improved energy recovery from dark fermented cane molasses using microbial fuel cells

Soumya Pandit, Balachandar G, Debabrata Das

《化学科学与工程前沿(英文)》 2014年 第8卷 第1期   页码 43-54 doi: 10.1007/s11705-014-1403-4

摘要: A major limitation associated with fermentative hydrogen production is the low substrate conversion efficiency. This limitation can be overcome by integrating the process with a microbial fuel cell (MFC) which converts the residual energy of the substrate to electricity. Studies were carried out to check the feasibility of this integration. Biohydrogen was produced from the fermentation of cane molasses in both batch and continuous modes. A maximum yield of about 8.23 mol H /kg COD was observed in the batch process compared to 11.6 mol H /kg COD in the continuous process. The spent fermentation media was then used as a substrate in an MFC for electricity generation. The MFC parameters such as the initial anolyte pH, the substrate concentration and the effect of pre-treatment were studied and optimized to maximize coulombic efficiency. Reductions in COD and total carbohydrates were about 85% and 88% respectively. A power output of 3.02 W/m was obtained with an anolyte pH of 7.5 using alkali pre-treated spent media. The results show that integrating a MFC with dark fermentation is a promising way to utilize the substrate energy.

关键词: dark fermentation     biohydrogen     microbial fuel cell     volatile fatty acid     anolyte    

Continuous biohydrogen production from diluted molasses in an anaerobic contact reactor

Sheng CHANG, Jianzheng LI, Feng LIU

《环境科学与工程前沿(英文)》 2011年 第5卷 第1期   页码 140-148 doi: 10.1007/s11783-010-0258-2

摘要: An anaerobic contact reactor (ACR) system comprising a continuous flow stirred tank reactor (CSTR) with settler to decouple the hydraulic retention time (HRT) from solids retention time (SRT) was developed for fermentative hydrogen production from diluted molasses by mixed microbial cultures. The ACR was operated at various volumetric loading rates (VLRs) of 20–44 kgCOD·m ·d with constant HRT of 6 h under mesophilic conditions of 35°C. The SRT was maintained at about 46–50 h in the system. At the initial VLR of 20 kgCOD·m ·d , the hydrogen production rate dropped from 22.6 to 1.58 L·d as the hydrogen was consumed by the hydrogentrophic methanogen. After increasing the VLR to 28 kgCOD·m ·d and discharging the sludge for 6 consecutive times, the hydrogentrophic methanogens were eliminated, and the hydrogen content reached 36.4%. As the VLR was increased to 44 kgCOD·m ·d , the hydrogen production rate and hydrogen yield increased to 42.1 L·d and 1.40 mol H ·molglucose-consumed , respectively. The results showed that a stable ethanol-type fermentation that favored hydrogen production in the reactor was thus established with the sludge loading rate (SLR) of 2.0–2.5 kgCOD·kgMLVSS ·d . It was found that the ethanol increased more than other liquid fermentation products, and the ethanol/acetic acid (mol/mol) ratio increased from 1.27 to 2.45 when the VLR increased from 28 to 44 kgCOD·m ·d , whereas the hydrogen composition decreased from 40.4% to 36.4%. The results suggested that the anaerobic contact reactor was a promising bioprocess for fermentative hydrogen production.

关键词: fermentative hydrogen production     anaerobic contact reactor (ACR)     sludge loading rate (SLR)     butyric acid-type fermentation     ethanol-type fermentation    

Occurrence and migration of microplastics and plasticizers in different wastewater and sludge treatmentunits in municipal wastewater treatment plant

《环境科学与工程前沿(英文)》 2022年 第16卷 第11期 doi: 10.1007/s11783-022-1577-9

摘要:

● Reduce the quantifying MPs time by using Nile red staining.

关键词: Microplastics     Municipal wastewater treatment plant     Phthalate esters     Thermal hydrolysis    

Microplastics in municipal wastewater treatment plants: a case study of Denizli/Turkey

《环境科学与工程前沿(英文)》 2023年 第17卷 第8期 doi: 10.1007/s11783-023-1699-8

摘要:

● High amounts of microplastics are released to receiving media from WWTPs.

关键词: Microplastics     Wastewater treatment plant     Removal efficiency     Daily discharge    

Membrane bioreactors for hospital wastewater treatment: recent advancements in membranes and processes

《化学科学与工程前沿(英文)》 2022年 第16卷 第5期   页码 634-660 doi: 10.1007/s11705-021-2107-1

摘要: Discharged hospital wastewater contains various pathogenic microorganisms, antibiotic groups, toxic organic compounds, radioactive elements, and ionic pollutants. These contaminants harm the environment and human health causing the spread of disease. Thus, effective treatment of hospital wastewater is an urgent task for sustainable development. Membranes, with controllable porous and nonporous structures, have been rapidly developed for molecular separations. In particular, membrane bioreactor (MBR) technology demonstrated high removal efficiency toward organic compounds and low waste sludge production. To further enhance the separation efficiency and achieve material recovery from hospital waste streams, novel concepts of MBRs and their applications are rapidly evolved through hybridizing novel membranes (non hydrophilic ultrafiltration/microfiltration) into the MBR units (hybrid MBRs) or the MBR as a pretreatment step and integrating other membrane processes as subsequent secondary purification step (integrated MBR-membrane systems). However, there is a lack of reviews on the latest advancement in MBR technologies for hospital wastewater treatment, and analysis on its major challenges and future trends. This review started with an overview of main pollutants in common hospital wastewater, followed by an understanding on the key performance indicators/criteria in MBR membranes (i.e., solute selectivity) and processes (e.g., fouling). Then, an in-depth analysis was provided into the recent development of hybrid MBR and integrated MBR-membrane system concepts, and applications correlated with wastewater sources, with a particular focus on hospital wastewaters. It is anticipated that this review will shed light on the knowledge gaps in the field, highlighting the potential contribution of hybrid MBRs and integrated MBR-membrane systems toward global epidemic prevention.

关键词: membrane technology     membrane bioreactor     hospital wastewater     hybrid MBR     integrated MBR-membrane system    

China Launched the First Wastewater Resource Recovery Factory in Yixing

《环境科学与工程前沿(英文)》 2022年 第16卷 第1期 doi: 10.1007/s11783-021-1496-1

Inhibition character of crotonaldehyde manufacture wastewater on biological acidification

《环境科学与工程前沿(英文)》 2021年 第15卷 第6期 doi: 10.1007/s11783-021-1403-9

摘要:

• The inhibition of the main organic pollutions in CMW was demonstrated.

关键词: Crotonaldehyde manufacture wastewater     Biological acidification     Volatile fatty acids     Inhibition     Toxic units    

“NEW” resource recovery from wastewater using bioelectrochemical systems: Moving forward with functions

Akshay Jain, Zhen He

《环境科学与工程前沿(英文)》 2018年 第12卷 第4期 doi: 10.1007/s11783-018-1052-9

摘要:

Resource recovery from wastewater is a key function of bioelectrochemical systems.

NEW resources to recover include Nutrient, Energy, and Water.

Identifying proper application niches can guide BES research and development.

More efforts should be invested to the application of recovered resources.

A mindset for energy performance and system scaling is critically important.

关键词: Bioelectrochemical systems     Resource recovery     Wastewater treatment     Energy     Nutrients    

Recent progress in electrospun nanofibers and their applications in heavy metal wastewater treatment

《化学科学与工程前沿(英文)》 2023年 第17卷 第3期   页码 249-275 doi: 10.1007/s11705-022-2245-0

摘要: Novel adsorbents with a simple preparation process and large capacity for removing highly toxic and nondegradable heavy metals from water have drawn the attention of researchers. Electrospun nanofiber membranes usually have the advantages of large specific surface areas and high porosity and allowing flexible control and easy functionalization. These membranes show remarkable application potential in the field of heavy metal wastewater treatment. In this paper, the electrospinning technologies, process types, and the structures and types of nanofibers that can be prepared are reviewed, and the relationships among process, structure and properties are discussed. On one hand, based on the different components of electrospun nanofibers, the use of organic, inorganic and organic−inorganic nanofiber membrane adsorbents in heavy metal wastewater treatment are introduced, and their advantages and future development are summarized and prospected. On the other hand, based on the microstructure and overall structure of the nanofiber membrane, the recent progresses of electrospun functional membranes for heavy metal removal are reviewed, and the advantages of different structures for applications are concluded. Overall, this study lays the foundation for future research aiming to provide more novel structured adsorbents.

关键词: electrospinning     heavy metal     adsorption     nanostructure     wastewater    

Photosensitivity sources of dissolved organic matter from wastewater treatment plants and their mediation

《环境科学与工程前沿(英文)》 2023年 第17卷 第6期 doi: 10.1007/s11783-023-1669-1

摘要:

● EE2 photodegradation behavior in the presence of four WWTPs’ DOM was explored.

关键词: Photosensitivity sources     17α-ethinylestradiol     Photodegradation     Dissolved organic matter     Wastewater treatment plants    

Construction of defect-containing UiO-66/MoSe heterojunctions with superior photocatalytic performance for wastewater

《化学科学与工程前沿(英文)》 2023年 第17卷 第4期   页码 449-459 doi: 10.1007/s11705-022-2226-3

摘要: Metal–organic frameworks are recognized as promising multifunctional materials, especially metal–organic framework-based photocatalysts, which are considered to be ideal photocatalytic materials. Herein, a new type of UiO-66/MoSe2 composite was prepared using the solvothermal method. The optimum composite was selected by adjusting the mass ratio of UiO-66 and MoSe2. X-ray diffraction analysis showed that the mass ratio influenced the crystal plane exposure rate of the composite, which may have affected its photocatalytic performance. The composite is composed of ultra-thin flower-like MoSe2 that wrapped around cubic UiO-66, a structure that increases the abundance of active sites for reactions and is more conducive to the separation of carriers. The photocatalytic properties of the composite were evaluated by measuring the degradation rate of Rhodamine B and the catalyst’s ability to reduce Cr(VI)-containing wastewater under visible light irradiation. Rhodamine B was decolorized completely in 120 min, and most of the Cr(VI) was reduced within 150 min. The photochemical mechanism of the complex was studied in detail. The existence of Mo6+ and oxygen vacancies, in addition to the Z-type heterojunction promote the separation of electrons and holes, which enhances the photocatalytic effect.

关键词: UiO-66/MoSe2     photocatalysis     dye-containing wastewater     heavy metal wastewater     oxygen vacancies    

Submerged arc plasma system combined with ozone oxidation for the treatment of wastewater containing

《环境科学与工程前沿(英文)》 2021年 第15卷 第5期 doi: 10.1007/s11783-020-1384-0

摘要:

• Submerged arc plasma was introduced in terms of wastewater treatment.

关键词: Thermal plasma     Submerged arc plasma     Wastewater     Ozone     Phenol     Highly energetic electron    

Integrated energy view of wastewater treatment: A potential of electrochemical biodegradation

《环境科学与工程前沿(英文)》 2022年 第16卷 第4期 doi: 10.1007/s11783-021-1486-3

摘要:

• Energy is needed to accelerate the biological wastewater treatment.

关键词: Biological wastewater treatment     Integrated energy view     Electroactive bacteria     Extracellular electron transfer    

标题 作者 时间 类型 操作

Enhanced production of laccase by

Wei SUN, Meiying XU, Chunyu XIA, Anhua LI, Guoping SUN

期刊论文

of a hybrid anaerobic-contact oxidation biofilm baffled reactor for the treatment of decentralized molasseswastewater

Minmin LIU,Ying ZHAO,Beidou XI,Li’an HOU,Xunfeng XIA

期刊论文

Improved energy recovery from dark fermented cane molasses using microbial fuel cells

Soumya Pandit, Balachandar G, Debabrata Das

期刊论文

Continuous biohydrogen production from diluted molasses in an anaerobic contact reactor

Sheng CHANG, Jianzheng LI, Feng LIU

期刊论文

Occurrence and migration of microplastics and plasticizers in different wastewater and sludge treatmentunits in municipal wastewater treatment plant

期刊论文

Microplastics in municipal wastewater treatment plants: a case study of Denizli/Turkey

期刊论文

Membrane bioreactors for hospital wastewater treatment: recent advancements in membranes and processes

期刊论文

China Launched the First Wastewater Resource Recovery Factory in Yixing

期刊论文

Inhibition character of crotonaldehyde manufacture wastewater on biological acidification

期刊论文

“NEW” resource recovery from wastewater using bioelectrochemical systems: Moving forward with functions

Akshay Jain, Zhen He

期刊论文

Recent progress in electrospun nanofibers and their applications in heavy metal wastewater treatment

期刊论文

Photosensitivity sources of dissolved organic matter from wastewater treatment plants and their mediation

期刊论文

Construction of defect-containing UiO-66/MoSe heterojunctions with superior photocatalytic performance for wastewater

期刊论文

Submerged arc plasma system combined with ozone oxidation for the treatment of wastewater containing

期刊论文

Integrated energy view of wastewater treatment: A potential of electrochemical biodegradation

期刊论文